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Resonant Response of a Thermalized Ensemble of 
Nonlinear Oscillators 
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The analysis is carried out of the response of the center of gravity (dipole 
moment) of the distribution of noninteracting thermalized nonlinear oscillators 
to a sinusoidal driving force. Heat bath coupling is modeled by damping and 
noise. The driving is weak, but the frequency is resonant, so that there is a 
nonlinear resonance in the phase space. The response has a linear part that can 
be obtained from the perturbation analysis and a small nonlinear correction 
that is specific for the resonant structure. 
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1. I N T R O D U C T I O N  

The response functions of  l inear and nonlinear Hamil tonian oscillators are 
convent ional ly  studied and applied in nonlinear mechanics, circuit theory, 
and other  fields. The influence of  a r andom environment  often plays an 
impor tan t  role and is studied in a variety of  problems as well. In the 
present paper,  we consider one problem of that  kind of an apparent ly  
generic nature:  the steady-state response of  a thermalized ensemble of  non-  
interacting nonl inear  oscillators to a sinusoidal driving. "Thermalized" here 
implies the interaction with the heat bath, modeled by damping and noise. 

The steady-state response is defined as the average (over the ensemble) 
t ime-dependent  displacement of  particles from their equilibrium in the 
large-time limit, when all t ransients have died out. We are specifically inter- 
ested in the "resonant"  s i tuat ion when the frequency of the driving falls 
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within the core of the thermal distribution of frequencies of the oscillators. 
The driving, assumed to be small, creates an (isolated) nonlinear resonance 
at the driving frequency, and the emphasis is on finding the impact of this 
resonance on the response. 

The results and implications of our analysis bear many analogies with 
the theory of the Landau damping of wave propagation in collisionless 
plasmas. (1) The dynamics of particles in the potential of these waves is 
essentially the same as what one has near a nonlinear resonance. One 
example of such parallelism is the Landau damping of bunched beam 
modes in the theory of coherent instabilities of particle beams in electron 
and proton storage rings. (2) Our analysis is qualitatively different in that it 
applies to the long-time limit, when the nonlinear trapping of particles in 
the resonance (wave bucket in plasma terminology), implicitly neglected in 
Landau damping theory, is essential. 

2. THE  M O D E L  

Consider a distribution of noninteracting particles in the nonlinear 
potential, coupled to the heat bath as modeled by damping and noise and 
subject to periodic driving: 

2 + o)2x + 2x 3 = ~ sin Ot - ~2 + (2t/) m r (1) 

Here co is the linear frequency, 2 > 0 is the amplitude of the nonlinearity, 
> 0 is the driving amplitude, s is the driving frequency, e is the damping 

decrement, ~/ is the noise amplitude, and ~(t) is the white noise random 
process ( ~ ( t ) ~ ( t + z ) ) = b ( z ) .  We will assume the coupling to the heat 
bath to be very weak, ~ ~ t/,~ co, 2, e, so that the longest time scale in 
the problem is the relaxation time rr = 1/~. The driving amplitude e will 
be assumed to be small, e~(2/e)3)(r//~), to allow the description of 
Hamiltonian dynamics of (1) (~=0 ,  t /=0 )  in terms of isolated nonlinear 
resonances. The last, and least important, assumption will be the smallness 
of the nonlinearity 2~e94(cO/), which is just made in order to avoid 
unessential complications. The extension to an arbitrary 2, and, for that 
matter, to an arbitrary nonlinear potential is straightforward. 

We will be analyzing the response of the centroid motion: 

D(t)  = f xp(x,  p, t) dx dp (2) 

to the weak perturbation in the "resonant" case, by which we will under- 
stand in this context that the driving frequency 12 falls within the core of 
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the distribution of frequencies of the oscillators. This latter condition can 
be shown to be: 

'm,>o-co>o (3) 
~(.0" 

The evolution of the distribution of particles in the stochastic system 
(1) is determined by the Fokker-Planck equation (FPE)(3): 

6p (esinI2t+co2x+2x3)~p=~p c~pp+rl-~p (4) + P~x- 

In the absence of perturbation, e = O, the stationary solution is the canonical 
distribution: 

Po = ~ exp - - Ho(x, p) (5) 

where No = 2rt(t//ooc~) is the normalization factor and H0 is the unperturbed 
Hamiltonian: 

H 0 = - ~  x2 ^ x 4 
+ co2 T + Z -4-- (6) 

Consider first the perturbed motion e ¢ 0 in the absence of damping and 
noise. The perturbed Hamiltonian is 

H = Ho(x, p) + ex sin 12t (7) 

We will describe the nonlinear-resonant motion in the system (7) following 
the conventional approach3 4'5) For that, we have to transform first to the 
action-angle variables of the unperturbed Hamiltonian (6). This can be 
done exactly, but to avoid cumbersome manipulations with special func- 
tions we will rather take advantage of the smallness of the nonlinearity 2. 
The action-angle variables then will be (in the lowest approximation in 2) 
just that of the linear motion 

0 = arctan 

and the Hamiltonian Ho should be averaged over 0, yielding 

3 2 / 2  (8) 

822/70/3-4-28 
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We introduce now the resonant phase ~ = 0 - f2t and present the perturbed 
Hamiltonian as 

( I ' ]  1/2 
H=Ho-g2I+e\~--~j  [ s in(~+ 2~t)--  sin g-'] (9) 

In the vicinity I I - L I  ~ v/7 of the resonance g2 = v(/~) [-where v(I) is the 
frequency of the unperturbed oscillations, v(I) = dHo/dI] one can keep only 
the time-independent (resonant) harmonic, expand the Hamiltonian Ho(I) 
up to quadratic terms in the deviation q = I - I r  of the action I from the 
resonant value I ,  drop the nonresonant harmonic, and put the amplitude 
of the sin g* term to its value at I = / ,  yielding the pendulum Hamiltonian: 

q2 
H r = k - ~ -  Vsin ~u (10) 

where k = dv(L)/dI and V= ~(I,/2oo) m. 

3. THE STEADY-STATE DISTRIBUTION 

Our goal now is to find the steady-state distribution function that 
establishes itself in the limit of long time t ,> zr= l/a, and compute the 
steady-state response D(t) (2), from it. Since the parameter e (and respec- 
tively V) was assumed to be small, we will be limiting ourselves to the 
approximate analysis of distribution function in powers of V m, operating 
with the precision that allows one to produce only two terms in the 
response: linear in V and the leading-order nonlinear correction. The 
methods of calculation will be different in the resonant region [q[ ~ (V/lk[)1/2 
and in the nonresonant one. Consider first the former one. 

The smallness of damping and noise in the model was introduced in 
order to make use of a relatively well-developed technique of the calcula- 
tion of the steady-state distribution in that limit, when it becomes constant 
along the Hamiltonian trajectoriesJ 6-s) The method is the elimination of 
"fast" variables in the FPE by averaging along the Hamiltonian trajec- 
tories. For our specific system in the resonant region, it is convinient to 
carry out this averaging in two steps, the first being the introduction of the 
resonant-action variables ~, I and averaging over (nonresonant) phase 0, 
and the second the averaging along the pendulum trajectories (I0) in the 
resonant variables (ref. 9, pp. 92, 101 ). As a result of the first averaging, the 
FPE for the steady-state distribution takes the form 

OHr Op OHr Op ~Ip + rl (11 ) 
~I O~ Og* OI oo cglJ 
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with the pendulum Hamiltonian Hr, (10). The second averaging in the 
FPE (11) yields the o.d.e, for the H-only dependent distribution, which can 
be solved explicitly. While the detailed derivation is available in the 
original references, (7,s) the sketch is presented in Appendix for the sake of 
self-consistency. The distribution can be represented by two different 
expressions inside and outside the separatrix. The former [sHr< V, 
s =  sgn(k)] is [see (A7)] 

1 ( c~ 
Pin = ~ e x p  r/ k-Ir (12) 

where N is the normalization constant. Outside the separatrix (sHr > V) 
one obtains [see (A9)l 

1 0~ V 1/2 
~ H  p+( ~ ) = ~ e x p { - ~  [ 1 - ~ / _ + ( 1 - ~ ) G ( ~ ) ] }  (13) 

~r ~ dz 
G(y) = ~--~ J~ (1 +z)1/2E([2/(1 +z) ]  I/2) (14) 

where + and - refer, respectively, to the,region above (q > 0) and below 
(q<0)  the separatrix, and E(y) is the complete elliptic integral of the 
second kind. 

Expressions (12) and (13) define the distribution function in the small 
region of the vicinity of the resonance Iq[ '~/~ where the pendulum 
approximation (10) is applicable. In the nonresonant region Iql ~ L ,  the 
distribution function can be found through the perturbative analysis of 
the same Liouville equation (15). The lowest-order approximation P0 in 
the nonresonant region has obviously the same unperturbed form as (5), 
P0 = (l/N1) exp[--(e/r/)coI]. The normalization factor N 1 equals No only 
in the lowest order, while the correction N~ -No--~ x / ~  appears due to the 
presence of the resonance and has to be found separately. The factor N1 is 
different above (q > 0) and below (q < 0) the resonance and can be found 
from the asymptotics sHr/V~ 1 of the resonant distribution (13). Using the 
asymptotics of the function G(y) of (14), G ( y ) ~  (2y)~/z + C~ with the 
numerical constant 

one obtains the nonresonant distribution up to the terms ~ x / ~  as 

//-~V ~ m C1] exp ( - ~ c o I )  

(15) 

(16) 
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The normalization factor N can be calculated to the necessary precision of 
~ V m by integrating the distribution (16) over/ ,  yielding 

N=Noexp(~colr){l+-~(.o(~V)l /2C~Ii-2exp(-~oolr)l}  (17) 

The perturbative correction P l up to the terms ~ V 3/2 can be obtained 
from the linearized Vlasov equation (dropping the "thermal" ~ e, t/ terms 
in the FPE): 

aPl ~/~ ( I ~1/2 ~jo0 + 
a--7+v(I) -e\~--~j [cos(O+cot)-cos(O-a~t)]---~=O (18) 

The result is 

1 [l+;og(V~l/2ct]eg(Ic~ ) 
P ' +- = - ; ,i 

Fsin(0 + t '2 t ) s in (0  = O t ) ]  (19) 

• v(i)-o j 
Notice here that the standard linearization procedure with the unper- 

turbed distribution Po in (5) would give the same expression (19) with No 
instead of N and without the first term in brackets, thus giving a correct 
linear-in-V part but not the ~ V 3/z one. The range of applicability of 
the perturbative solution p+ =P0+ +Pl+  can be easily seen to be Iq[ >> 
(V/lk[)1/2, thus overlapping with the range of applicability of the resonant 
distribution (13). 

4. T H E  S T E A D Y - S T A T E  RESPONSE 

Having the steady-state distribution defined by the expressions 
(12)-(19), we are in a position now to calculate the response D(t) of (2). 
First, changing the variables of integration from x, p to L 0, one 
immediately observes that all expressions (12), (13), (16), and (19) for 
the distribution function yield the response in the same phase, so that 

D(t) = A sin f2t (20) 

Thus, there is no phase rotation between the driving and the response, 
which is a natural consequence of the smallness of the damping cc 

The response amplitude A has to be calculated by integration of (2) 
over all the phase space. Splitting the integral into two separate contri- 
butions from the "resonant" region Iq[ <q,. [where q,.= R(V/[kl) 1/2 with 
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the constant R>> 1] and from the "nonresonant" one [ql >qc, one can 
calculate the former using the resonant distribution (12), (13), and the 
latter using the perturbative distribution p+ = Poe + PI+. The integration 
of the distribution (12), (13) over the range ]ql < qc can be seen, using the 
antisymmatry of the argument of the exponential in expression (13) relative 
to q, to give the contribution ~ V 3/z for any finite R. The smallness of this 
contribution, however, exceeds the precision of the derivation of the 
distribution (12), (13), since the next-order correction to the distribution 
(13) [coming from the dropped terms in the transition from the full 
Hamiltonian (9) to the pendulum approximation (10) ] can be estimated to 
yield a contribution of the same order of magnitude. Realizing as well that 
the consistent calculation of such a correction is not a straightforward 
extension of the presented approach, we choose instead to drop all the 
contributions ~ V 3/2 to the response A altogether and to keep only the 
terms of the lower order. Those have to be found therefore only in the 
nonresonant contribution from the region Iql > qc, which after the trivial 
integration over 0 presents itself as 

z t ~ f  I e x p (  -c~ ) I 1 s(a/q)og(V/k)I/2Cl "] A = 2 e ~  ql>qc -~ooq v(I) vZ(if_(2 z F- [vz(i)_f22 [ .jdI 
(21) 

The lowest-order linear-in- V part of this integral has the form familiar from 
plasma theory (1) with the principal-value integration: 

A0 =2e ~oo ~ fp v Iexp ( -  ~ caq) v(I) �9  v 2 ( 7 ) -  ~2  dI  (22) 

The second term in formula (21) will produce the only nonlinear 
contribution of order lower than V 3/2. This dominating nonlinear contribu- 
tion can be found by putting N =  No, taking a finite but large value of R, 
and keeping only the logarithmically dominating part, yielding 

A1 =--~'- e3/2 \~j(f ~2 kx//-~lc~ (~)1/4 C1 In (/r  Ik[m(2og/Ir) Z/4) (23) 

It should be noticed here that retaining only the logarithmically-dominating 
term does not allow one to find the numerator under the logarithm, 
and the one in formula (23) is but an arbitrary choice. C, is a numerical 
constant, (15). 
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5. C O N C L U S I O N S  

Our final result for the response A consists of two expressions: formula 
(22) for the lowest-order linear-in-e part A0 and formula (23) for the first 
nonlinear correction A1 of the order e 3/z In(l/e). It is important to realize 
that this order of magnitude of nonlinear correction is due to the influence 
of the nonlinear resonance. In the nonresonant case 1"2 < ~ the lowest-order 
part of the response ~8 would be given by the same formula (22), while 
the first nonlinear correction would emerge from a conventional perturba- 
tion analysis to be of the order of 82 . It is also interesting to notice that 
unlike the linear part Ao of (22), the nonlinear correction A 1 of (23) is 
associated only with the particles in the close vicinity of the resonance 
I=I, which is manifested in the dependence on the function v(I) only 
through its local behavior at the point 1=  I~. 

A general remark relates to an unusual logarithmic order of the 
correction A 1. Basically, it can attributed to a "nonlocality" of the influence 
of the resonance on the steady-state distribution: though the strong effect 
of the perturbation .-.e 1/2 on the trajectories is limited to the region 
I I - I r l  ~81/2, the steady-state distribution is perturbed by .-.81/2 even far 
from the resonance [see formula (16)]. This nonlocality becomes possible 
in view of an arbitrarily large time that is allowed for the relaxation to the 
steady state, so that even a small damping and noise redistribute the 
particles according to the "global" balance of density. Most graphically, 
this argument manifests itself in comparison with the steady-state response 
of the same ensemble of nonlinear oscillators without damping and noise. 
Preliminary considerations in the model with either adiabatic or instan- 
taneous turn-on of the perturbation indicate that the leading nonlinear 
correction to the response is of the order 83/2 and the logarithmic term is 
absent. 

A P P E N D I X  

In this Appendix, we briefly introduce the method of solving the FPE 
(11 ) in the limit ~, r/--. 0, following refs. 7 and 8. In that limit, the solution 
p depends on phase-space variables /, g~ only through the combination 
H,(L gs). The equation for this solution is obtained by plugging it into the 
FPE (11) (lhs yields zero) and averaging all emerging functions of I and 
over time while assuming that the time dependence of I(Hr, t) and ~U(Hr, t) 
is like that of the Hamiltonian motion with the Hamiltonian Hr of (10). 
The most useful flux conservation form is obtained in the action variable 
J(Hr) of the pendulum (10), 

~ (~F(J)p +-~ D(J) ~jj)=O (A1) 
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where the quantities F and D are defined by 

F(J) = / I O J \  (A2) 
\ el~ 

O ( J ) =  I (A3) 

The partial derivatives here are for ~ = const and the angle brackets stand 
for the above-described averaging over time. 

One can easily obtain now the zero-flux solution of Eq. (A1) by 
straightforward integration (the flux is the term under the external differen- 
tiation). Returning to the variable Hr(J ) in the resulting integral yields 

~ C . .  F(H,)~ 
p = e x p  -- ~co j a r J , ~ )  (A4) 

We will consider the distribution function only in the vicinity of the non- 
linear resonance 11-Irf = Iql < r//~co, where we can compute the averages 
in the leading order in q (or H~) to be 

F = ,  fk<q2> 
(kI~<q> 

D = kEIr<q 2 > 

if sHr < V 

if sH~ > V 
(A5) 

(A6) 

where s = sgn(k). Note here that the expressions for F are quite different for 
the region inside the separatrix, sHr < V (where <q> = 0) and the region 
outside the separatrix, sHr > V. Thus, we obtain an explicit formula for the 
region inside the separatrix (sHr < V) 

1 ( a 
Pin = ~ e x p  r/ kI r (A7) 

and two different expressions for p + in the region above the separatrix, 
SHr > V, q > O, and for p_ in the region below the separatrix, SHr > V, 
q<0:  

1 0~ V 
-09 - - q = -  P-'+ = Nexp [ - -  r/ (kit - I  k Jr (H'dH ' <-@//J <q> "~-] (AS) 

Here we also used the condition of the continuity of the distribution 
function at the separatrix sHr = V. 

The two averages in theexpression (A8) can be calculated by changing 
the variable of integration in the definition of the average < - - . )=  
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1/T(Hr) Sgdt..., with T(Hr) being the period of oscillation of the pendulum 
(10), from t to gt through dt= dgt/~= d~/kq(Hr, gt) (the phase-space 
variables have to be expressed then as functions of Hr and gt), yielding 

1 ~ V + 1/2 09 G sH, p_+(Hr,:~exp ( - ~  [~_~ _ (V) ( _ 7 ) ] }  (A9, 

(1 + z)l/2E([2/1 + z)] 1/2) (A10) 

where E(y) is the complete elliptic integral. 
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